

MUTHAYAMMAL ENGINEERING COLLEGE

MKC

(An Autonomous Institution)

(Approved by AICTE, New Delhi, Accredited by NAAC & Affiliated to Anna University)
Rasipuram - 637 408, Namakkal Dist., Tamil Nadu

MECH

Must Know Concepts (MKC)

2021-22

Subject		19MEE07 &INDUSTRIAL AUTOMATION & ROBOTICS			
S.No	Term	Term Notation Concept/Definition/Meaning on/Expression		Units	
	UNIT I: INTRODUCTION				
1.	Production system	collection of people, equipment, and procedures organized to perform the manufacturing operations of a company			
2.	Facilities.		the equipment, the way the equipment is laid out, and the factory in which the equipment is located.		
3.	Manufacturing support systems		the procedures used by the company to manage production and to solve the technical and logistics problems encountered in ordering materials, moving the work through the factory		
4.	Automated Systems		A process is performed by a machine without the direct participation of a human worker		
5.	Sequence of activities in Manufacturing support system		 business functions, product design, manufacturing planning, and manufacturing control 		
6.	automated elements of the production system		 automation of the manufacturing systems computerization of the manufacturing support systems 		
7.	Automated manufacturing systems classification		 fixed automation, programmable automation, and flexible automation. 		
8.	Automation Principles and Strategies		 the USA Principle, Ten Strategies for Automation and Process Improvement, and an Automation Migration Strategy 		
9.	USA stands for		(1) understand the existing process, (2) simplify the process, and (3) automate the process.		

10.	Basic Elements of an Automated System	 (1) power to accomplish the process and operate the system, (2) a program of instructions to direct the process, and (3) a control system to actuate the instructions. 	
11.	Advanced automation functions	(1) safety monitoring,(2) maintenance and repair diagnostics, and(3) error detection and recovery.	
12.	Levels of Automation	Device level. Machine level. Cell or system level Plant level. Enterprise level.	
		UNIT II: MATERIAL HANDLING	
13.	Material handling	the movement, protection, storage and control of materials and products throughout the process of manufacture and distribution, consumption and disposal	
14.	Material Handling Equipment	(4) transport equipment, (5) positioning equipment, (6) unit load formation equipment, (7) storage equipment, and (8) identification and control equipment.	
15.	Transport Equipment	industrial trucks, automated guided vehicles, rail-guided vehicles, conveyors, hoists and cranes.	
16.	unitizing equipment	(1) containers used to hold individual items during handling and (2) equipment used to load and package the containers.	
17.	Storage methods	(1) conventional storage methods and(2) Automated storage systems.	
18.	Design Considerations in Material Handling	Material Characteristics Flow Rate, Routing, and Scheduling Plant Layout Unit Load Principle	
19.	AGVS	automated guided vehicle system	
20.	automated guided vehicle system	a material handling system that uses independentlyoperated, self- propelled vehicles guided along defined pathways	
21.	Types of AGVS	(1) towing vehicles for driverless trains, (2) pallet trucks, and (3) unit load carriers	

		(1) driverless train operations,				
22.	AGVS Applications	(2) storage and distribution,				
22.		(3) assembly line applications, and				
		(4) flexible manufacturing systems.				
		(1) imbedded guide wires,				
	Vehicle Guidance Technologies	(2) paint strips,				
23.		(3) magnetic tape,				
23.		(4) laser-guided vehicles (LGVs), and				
		(5) inertial navigation				
		material transport equipment				
24.	Rail-Guided	consists of motorized vehicles that				
24.	Vehicles					
		are guided by a fixed rail system.				
25	C	A conveyor is a mechanical				
25.	Conveyors	apparatus for moving items or bulk				
		materials, usually inside a facility.				
		Roller conveyors				
	Types of	Skate-wheel conveyors				
26.	Conveyors	Belt conveyors.				
	Conveyors	Chain conveyors				
		Overhead trolley conveyor				
	Automoted storege	1) fixed-aisle automated				
27.	Automated storage	storage/retrieval systems and				
	systems types	2) Carousel storage systems.				
		UNIT III: FUNDAMENTALS OF ROBOT				
		UNIT III: FUNDAMENTALS OF ROBUT				
28.	Industrial	Reprogrammable, multifunctional				
20.	Robot	mechanical device performing tasks.				
20	Manipulato	Machine having same function as of				
29.	$\ddot{\mathbf{r}}$	human being				
20	Work	Space within the robot manipulates				
30.	envelope	its wrist				
21	_					
31.	Pitch	Up and down movement of wrist				
22	Dall	Detation of muist				
32.	Roll	Rotation of wrist				
33.	Yaw	Right and Left movement of wrist				
33.	1 aw	Right and Left movement of wrist				
34.	Actuator	Devices used to convert hydraulic				
	Actuator	energy to Mechanical Energy				
		Automation is a technology that is				
	Automation	concerned with the use of				
35.		mechanical electronic and computer				
		based system in the operation and				
		control of production.				
_	Types of	Fixed automation, programmable				
36.	Automation	automation, flexible automation				
		Do not harm human being				
37.	Rule of	Obey human being				
37.	robot	Protects itself from harm				
	Dobo4					
38.	Robot	It means study of structure of				
	anatomy	Robots				

Robot control techniques	Non Servo Control Servo Control	
Robot		
RIA definition of robot	Reprogrammable, multifunction manipulator designed to move materials, parts, tools or special devices through variable programmed motions for the performance of the variety of tasks.	
4D jobs	Dirty Dangerous Difficult Dull	
Types of Robot movements	Arm and Body Motion Wrist Motion	
Offset	Point of action for the tool mounted to the Robot tool plate	
Processing application of Robot	Welding Painting Assembly Inspection	
Disadvantag es of robots	Replacement of Human Labour More Unemployment Significant Retraining Costs	
Advantages of robots	Reprogram Ability Adjustable Kinematics Greater Response Time Improved Product Quality	
performed by the robot	Palletizing Depalletizing Greater Flexibility	
Work	Loading Unloading	
General areas of robotics	Industrial, hobbyist, promotional, personal, military, educational, medical.	
Major components of robots	Manipulator, end effector, power source, controller, censors, actuator	
Wrist	It is the set of rotary joints to which a robots end effector is attached.	
Robot joints	Linear Rotational Twisting Revolving	
Types of robot anatomy	Polar Cylindrical Cartesian Jointed arm	
	Robot joints Wrist Major components of robots General areas of robotics Work performed by the robot Advantages of robots Disadvantag es of robots Processing application of Robot Offset Types of Robot movements AD jobs RIA definition of	

53.	Sensors	Device that detects information about the surroundings		
54.	Accuracy	Defined target point within work volume.		
55.	Precision	Closeness to the true value		
56.	Repeatabilit v	Ability of the robot to position itself again and again		
57.	Spatial Resolution	Control resolution combined with mechanical inaccuracy		
58.	Control Resolution	Capability of the robot's positioning system to divide the range of the joint into closed spaced points		
59.	Palletizing	Arranging materials on a pallet as per rules		
60.	Tactile Sensor	Indicates contact between themselves and some other solid objects		
61.	Proximity Sensor	Senses the presence or absence of the object without physical contact		
62.	Range sensor	Senses the distance of the object		
63.	Piezoelectric Materials	When stretched or compressed generates electric charges		
64.	End-effector	Attachments at the wrist arm perform a task.		
65.	Grippers	Device to grasp objects		
66.	Stripping Device	Used to remove work piece from magnetic gripper		
67.	Advantages of magnetic gripper	Pick up times are very fast To handle metal parts with holes Require only one surface gripping		
68.	Disadvantag es of magnetic gripper	Residual magnetism Side slippage More than one sheet will be lifted by the magnet from a stack		
69.	Types of magnetic grippers	Electromagnetic grippers Permanent magnet grippers		
70.	Adhesive grippers	Which an adhesive substance performs the grasping action for handling fabrics and other lightweight material.		
71.	Limitations of adhesive grippers	Adhesive substance losses is tackiness on repeated usage Reliability is diminished with successive operations		

72.	Advantages of suction Cup grippers	Requires only one surface of the part for grasping Applies uniform pressure distribution Lightweight gripper				
UNIT V: ROBOT DRIVES						
73.	Types of Drive Systems	Electric: Servo motors, Stepper motors Hydraulic actuators Pneumatic actuators				
74.	Linear hydraulic actuator	Single Acting Cylinder Double Acting Cylinder Double Acting Double rod Cylinder				
75.	Hydraulic rotary actuator	Geared motor Vane motor Piston motor				
76.	Advantages of hydraulic actuator	Robust Self-Lubricating High Efficiency				
77.	Disadvantag es of hydraulic actuator	Expensive Noisy High Maintenance				
78.	Advantages of pneumatic actuator	Compact Cheapest Compressed air can be stored and conveyed easily over long distance				
79.	Disadvantag es of pneumatic actuator	More noise and vibration Not suitable for heavy load If mechanical stops are used resetting the system can be slow				
80.	Advantages of electrical actuator	Widespread availability of power supply No pollution of working environment High power conversion efficiency				
81.	Disadvantag es of electrical actuator	Poor dynamic response Larger and heavier motors must be used which is costly Conventional gear driven create backlash				
82.	Drive system used in the robot	Gears Pulley Drive Rack and Pinion Recirculating Ball and Screw Rotary Drives				
83.	Advantages of open loop system	Simple Economical Easier to Construct				

84.	Advantages of closed loop system		The systems are accurate even in the presence of nonlinearities Less affected by noise	
85.	Uses of stepper motor		Used for measured rotation Can be held at a particular position of shaft	
	Faculty Prepared		Signature	
 Dr R.SenthilKumar Dr S.Sudhagar 			1. 2.	
3. Dr S.Boopathi			3.	
4. Mr A.Gokul			4.	

HoD